1 The displayed formula of an organic compound is shown below.

What is the systematic name of this organic compound?

- A Propyl propanoate
- **B** Propyl butanoate
- C Butyl propanoate
- **D** Butyl butanoate

Your answer	

[1]

© OCR 2014 H432/02

PhysicsAndMathsTutor.com

OCR (A) Chemistry A-Level - Carboxylic Acids and Esters

2. Which alcohol could be used to prepare HCOOCH(CH₃)₂?

A Propan-1-ol

B Propan-2-ol

C 2-Methylpropan-2-ol

D Methanol

Your answer

[1]

PhysicsAndMathsTutor.com

OCR (A) Chemistry A-Level - Carboxylic Acids and Esters

3.	Equ	ual amounts of the four compounds are added to the same volume of water.	
	Wh	ich compound would produce the most acidic solution?	
	Α	CH ₃ CONH ₂	
	В	CH ₃ COOH	
	С	CH ₃ COOCH ₃	
	D	CH ₃ COC <i>l</i>	
	You	ur answer	[1]

[1]

4.	Which compound(s) is a/are structural isomer(s) of C ₆ H ₁₂ O ₂ ?		
		1	hexanoic acid
		2	ethyl butanoate
		3	propyl propanoate
	Α	1, 2	and 3
	В	Only	y 1 and 2
	C Only 2 and 3		
	D	Only	y 1
	Your answer		

- 5. This question is about weak acids.
 - (a) Compound A is a weak monobasic acid.

A student is supplied with a 250.0 cm³ solution prepared from 2.495 g of **A**.

The student titrates 25.0 cm³ samples of this solution with 0.0840 mol dm⁻³ NaOH in the burette.

The student carries out a trial, followed by the three further titrations. The diagrams show the initial burette readings and the final burette readings for the student's three **further** titrations.

All burette readings are measured to the nearest 0.05 cm³.

Titrat	tion 1	Titrat	Titration 2		ion 3
Initial reading	Final reading	Initial reading	Final reading	Initial reading	Final reading
	======================================	= 23 = 24 = 25 = 25 = = 25	45 46 47 	9 	======================================

(i) Record the student's readings and the titres in an appropriate format.

Calculate the mean titre that the student should use for analysing the results.

mean titre =	 cm ³	[4]	1
mount du	 OIII	1.71	ı

(ii) The structure of compound A is shown below.

Compound A has four optical isomers.

Using this information and the student's results, answer the following.

- Determine the molar mass of **A** and the formula of the alkyl group R.
- Draw the structure of compound **A** and label any chiral carbon atoms with an asterisk*.

Show all your working.

Two reactions of compound **A** are carried out.

Suggest an equation for each reaction and state the type of reaction.

In your equations, draw structures for organic compounds. You can use R for the alkyl group.

(i) Magnesium ribbon is added to a solution of compound **A**. Gas bubbles are seen and the magnesium slowly dissolves.

Equation

(ii) Compound **A** is heated with a few drops of concentrated sulfuric acid as a catalyst. A cyclic 'dimer' of compound **A** forms.

Equation

(c) Chromium(III) picolinate, shown below, is a neutral complex that can be prepared from the weak acid, picolinic acid.

Chromium(III) picolinate is used in tablets as a nutritional supplement for chromium.

(i) Draw the structure of the ligand in chromium(III) picolinate.

(ii) A typical tablet of chromium(III) picolinate contains 200 µg of chromium.

Calculate the mass, in g, of chromium(III) picolinate in a typical tablet. 1 μg = 10⁻⁶ g.

Give your answer to three significant figures.

[1]

[5]

OCR (A) Chemistry A-Level - Carboxylic Acids and Esters

- 6. This question is about esters.
 - (a) The structure of ester A is shown below.

(i) What is the systematic name of ester A?

.....[1]

(ii) In the boxes, draw the organic products for the reactions of the functional groups in ester **A** shown below.

Each reaction forms two organic products.

(iii) Name the type of reactions of ester A shown in (ii).

.....[1]

(b) The protons in ester A are in four different environments, labelled 1-4 on the structure below.

$$\operatorname{Br} \overset{\mathsf{1}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}$$

Complete the table to predict the **proton** NMR spectrum of ester **A**.

Proton environment	Chemical shift	Splitting pattern
1		
2		
3		
4		

[4]

- (c) Compound B is a structural isomer of ester A.
 - Compound **B** reacts with aqueous sodium carbonate.
 - The ¹³C NMR spectrum of **B** has 4 peaks.

Draw a possible structure for compound **B**.

[1]

(d) A polyester is formed from 200 molecules of 4-hydroxybenzoic acid.

What is the relative molecular mass, $M_{\rm r}$, of the polyester?

$$M_{\rm r} =$$
 g mol⁻¹ [2]

© OCR 2019 Turn over

(e)* A student intends to synthesise ester C.

(i) Plan a two-stage synthesis to prepare 12.75g of ester **C** starting from 2-methylpropanal, (CH₃)₂CHCHO. Assume the overall percentage yield of ester **C** from 2-methylpropanal is 40%.

In your answer include the mass of 2-methylpropanal required, reagents, conditions and equations where appropriate.

Purification details are not required.	[6]
Additional answer space if required	

(ii) The mass spectrum of ester C is shown below.

Suggest possible structures for the species responsible for peaks ${\bf Y}$ and ${\bf Z}$ in the mass spectrum.

PhysicsAndMathsTutor.com

- 7. Which of these reagent(s) will **not** react with HOCH₂CH₂CH₂COOH?
 - A NaCN in ethanol
 - ${\bf B}-{\bf C}_2{\bf H}_5{\bf OH}$ in the presence of an acid catalyst
 - \mathbf{C} $(CH_3CO)_2O$
 - **D** concentrated H₂SO₄

Your answer		
-------------	--	--

[1]

© OCR 2020 Turn over

8.	Whi	ch one of the following reacts with ethanoic acid and with phenol?	
	Α	Aqueous potassium hydroxide	
	В	Bromine	
	С	Calcium carbonate	
	D	Methanol and an acid catalyst	
	You	r answer	[1]
9	Wh	at is the structural formula of ethyl 3-methylbutanoate?	
	Α	CH ₃ CH ₂ COOCH ₂ CH ₂ CH(CH ₃) ₂	
	В	$\mathrm{CH_{3}CH_{2}COOCH(CH_{3})CH_{2}CH_{3}}$	
	С	CH ₃ CH ₂ CH(CH ₃)COOCH ₂ CH ₃	
	D	(CH ₃) ₂ CHCH ₂ COOCH ₂ CH ₃	
	Υοι	ır answer	[1]

Alcohols can be used to prepare organic compounds with different functional group

- (a) $HO(CH_2)_4OH$ can be oxidised to form $HOOC(CH_2)_2COOH$.
 - (i) State the reagents and conditions and write an equation for this oxidation.

 In the equation, use [O] for the oxidising agent.

 Reagents and conditions:

 Equation:

[3]

(ii) $HOOC(CH_2)_2COOH$ is soluble in water.

Explain, using a labelled diagram, why $\mathsf{HOOC}(\mathsf{CH}_2)_2\mathsf{COOH}$ is soluble in water.

- **(b)** HOOC(CH₂)₂COOH and HO(CH₂)₄OH react together to form polymer **E**.
 - (i) Draw one repeat unit of polymer E.

The functional groups should be clearly displayed.

[2]

(ii) Governments are encouraging the development of biodegradable polymers to reduce dependency on persistent plastic waste derived from fossil fuels.

Polymer **E** is a biodegradable polymer.

Suggest why polymer **E** is able to biodegrade.

(iii) A large yield of polymer **E** can be obtained by reacting a diacyl dichloride with $HO(CH_2)_4OH$.

The diacyl dichloride is prepared from HOOC(CH₂)₂COOH.

Complete the equation for the formation of a diacyl dichloride from $HOOC(CH_2)_2COOH$.

[3]

11. This question is about two different types of acid found in organic compounds, carboxylic acids and sulfonic acids, as shown in **Fig. 6.1**.

Fig. 6.1

(a) Complete **Table 6.1** to predict bond angles **a** and **b** and name the shapes which makes these bond angles in the functional groups of carboxylic acids and sulfonic acids.

Type of acid	Acid	Bond angle	Name of shape
Carboxylic acid	R—C a		
Sulfonic acid	0 b h		

Table 6.1

(b) Ethanoic acid, CH_3COOH , and methanesulfonic acid, CH_3SO_2OH , are both monobasic acids. The p K_a values are shown in the table.

Acid		pK _a
Ethanoic acid	CH ₃ COOH	4.76
Methanesulfonic acid	CH ₃ SO ₂ OH	-1.90

A student suggests that $\rm 1.0\,mol\,dm^{-3}$ $\rm CH_3SO_2OH$ should have a lower pH value than $\rm 1.0\,mol\,dm^{-3}$ $\rm CH_3COOH.$

Write an equation, showing conjugate acid–base pairs, for the equilibrium of ${\rm CH_3SO_2OH}$ with water and explain, with reasons, whether the student is correct.

Label the conjugate acid–base pairs: A1, B1 and A2, B2.
[4]

© OCR 2020 Turn over

(c) Carboxylic acids and sulfonic acids both form esters.

Sulfonic acid esters can be hydrolysed by aqueous alkali. The equation shows the alkaline hydrolysis of a sulfonic acid ester.

$$\mathsf{CH_3SO_2OCH_3} \; + \; \mathsf{OH^-} \; \rightarrow \; \mathsf{CH_3SO_2O^-} \; + \; \mathsf{CH_3OH}$$

In the 3 boxes below, add curly arrows to show the mechanism for this reaction.

In the first box, the hydroxide ion acts as a nucleophile.